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A critical assessment of a published paper (by Agrawal) is presented. The procedure proposed 
and used by Agrawal to distinguish a false compensation effect from a true one is shown not to be 
COITeCt. 

In a recent paper, Agrawal [1] proposed some checkpoints for the drawing of 
conclusions regarding the occurrence of a true or false compensation effect (CE). 

In the introduction he shows that by applying the Arrhenius equation 

k = A exp ( -E /RT)  (1) 

in the field of heterogeneous kinetics, both A and E have little physical significance. 
He sees the main cause of this in the lack of a definition for a "mole of solid". It is 
well known that the application of Eq. (1), valid for homogeneous gas-phase 
reactions, is an absolutely unjustified extrapolation [2]. Even if the validity of Eq. 
(1) were proved for certain heterogeneous reactions, the meanings of A and E would 
be rather obscure, due to the high complexity of the heterogeneous processes 
involving .solid-state reactions, gas evolution, diffusion, etc. How could the 
definition of a "mole of solid" help? If  the rate constant k actually varies with Tin 
the way prescribed by Eq. (1), from the experimental data a magnitude can be 
derived having the dimension of temperature (let us call it the characteristic 
temperature O), denoted in Eq. (1) by E/R, since it can be transformed into energy per 
mole by multiplying it by R, or into energy per molecule by multiplying it by the 
Boltzmann constant. The definition of a mole of solid affects the amount of energy 
calculated from O, but it cannot clarify the physical meaning of this energy. 

If a linear relation between In A and Eis observed for a series of related reactions, 
it is referred to as a CE, formally involving an "isokinetic point", i.e. a temperature 
T i at which all reactions would have the same rate constant ki, since in this case Eq. 
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(1), written in the form 

In A = In k ,+  E/RTI (2) 

becomes valid for the whole series, giving a straight line in a In A vs. E plot, as 
demanded by the CE. 

Such a CE has been reported in many papers, frequently for pyrolysis processes 
investigated under non-isothermal conditions, mostly when linear temperature 
programs are used. A great number of calculation techniques have been proposed 
to derive In A and E values directly from TG and DTA curves recorded at constant 
heating rate. These methods are based on the presumption that pyrolysis processes 
can be characterized by a single rate constant, depending only on temperature and 
obeying the Arrhenius equation (1). Since this hypothesis is very arbitrary, the 
existence of a CE in heterogeneous reactions has been debated, and many authors 
consider that it arises due to computational artifacts. 

Agrawal disputes mainly three reports [3-5]. After re-examining their data by 
plotting In k vs. l I T  and finding no isokinetic temperature in these plots, he 
concludes that these are cases of a "false" CE. The significance of the Arrhenius plot 
Ink vs. I / T  in CE studies was advocated particularly by Exner [6-8] and Petersen 
[9], although it was already known to some earlier workers [10] with all its 
consequences. 

Exner has pointed out that it is not correct to determine the CE by a linear 
regression of E vs. In A, because these quantities are mutually dependent, both 
being derived from the original kinetic data. Since k and T are independently 
determined, and since the two quantities are not a priori mutually dependent, the 
plot of In k vs. l I T  is correct statistically. 

But from where does Agrawal get the k values to make his Ink vs. l I T  plot? 
Chornet and Roy [3] and Zsak6 and Arz [4] have reported kinetic parameters (A 
and E) derived from non-isothermal experiments; neither they nor Alvarez et al. [5] 
have reported any k values. Agrawal must have calculated his In k values, using the 
Arrhenius relation (1): from the reported A and E values, which are mutually 
dependent, and which are derived directly from the original non-isothermal data. 
Therefore, Agrawal's procedure is statistically more objectionable than the use of 
In A vs. E plots. 

But even if Agrawal's procedure were correct, his conclusions would not be. By 
producing these "Arrhenius plots", he considers that in the case of a "true ' CE one 
must have 1) a single point of concurrence of the straight lines, and 2) n ki # 0. 

Let us consider the first criterion. For the thermal decomposition of CaCO 3, the 
log A vs. E plot gives a straight line with a correlation coefficient of r = 0.998 [4]. 
"However, the Arrhenius plot shows no single point of concurrence." Consequent- 
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ly, the CE is false, concludes Agrawal. By using Agrawal's procedure of 
constructing In k vs. E plots, by calculating them from A and E, a single point of 
concurrence can be obtained only if r = 1, as otherwise the Arrhenius lines intersect 
each other in some domain A In k. A ( 1 / T )  [11], whose dimensions are determined 
by r. 

In order to illustrate the above statement, we shall take five log A vs. E pairs on 
the line 

logA = - 2 + 5  x 10 -4 E (3) 

at equal distances on the A axis. 
By means of Eq. (1), from each pair we obtain k as a function of T, giving a 

straight line in co-ordinates log k vs. 1/T. The five lines have altogether ten 
intersections, which are all identical if only solutions of Eq. (3) are used, i.e. in this 
case one obtains a single point of concurrence. 

Let us apply a perturbation consisting of the following:the first and the last pairs 
are left unchanged, in the second and fourth term log A is increased by 0.1, and in 
the third term it is diminished by 0.14. Practically, this perturbation does not affect 
the slope of  the straight line, but it diminishes the correlation coefficient and 
transforms the point of concurrence of the Arrhenius lines into a domain of 
intersection. This perturbation has been repeated several times. For each set of five 
log A vs. E pairs obtained by means of these perturbations, the following 
magnitudes have been calculated: 

- -  the correlation coefficient, r: 
- -  the ten intersections of the corresponding Arrhenius lines, i.e. ten pairs of 

log k i vs. 1/Ti values, 
- -  the relative standard deviation of the log ki values from their arithmetical 

mean log kl, i.e. the ratio of the standard deviation to the arithmetical mean: 

A,(log ki) = A/log ki;  

- -  the relative standard deviation for 1/Ti: A,(1/Ti)  = A/1/Ti ;  

- -  the maximum differences between two individual log k~ values (A log ki) , 1 /T  i 
values (A(1/Ti)) ,  and T i values (ATi).  

Some of the calculated values are given in Table 1 as functions of the number of 
perturbations applied (p). 

As seen from this Table, in the case of A,(1/Ti),  A log k~ and A(1/Ti),  each 
perturbation leads to an increase by the same value. It is worth mentioning that a 
plot of log X vs. log (1 - r), where X stands for A,(log k~), A,(1/T~), A log k~ or 
A (1/Ti) , gives four straight lines, one for each of the magnitudes designated above 
by X. These lines are parallel with each other, having a slope equal to 
0.50785+0.00517, and their linearity can be characterized by a correlation 
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Table I Effect of  perturbations upon the intersection of  Arrhenius lines (legend in the text) 

p 0 1 2 5 10 20 

r 1 0.99992 0.99969 0.99806 0.99231 0.97028 
A,(log k~) 0 0.1942 0.3904 0.9884 2.0114 4.1827 
d,(1/Ti) 0 0.02433 0.04853 0.121344 0.24267 0.48534 
A log kl 0 1.44 2.88 7.20 14.4 28.8 
A(1/T~) x 104 K -1 0 2.196 4.393 10.98 -~.96 43.93 
ATe, K 0 42 85 223 545 10,700 

coefficient 0.99928 4-0.00114. Obviously, the area of  the domain of  intersection is 
strictly correlated with r. 

In the case of  the pyrolysis of  CaCO3, the correlation coefficient, considered 
"excellent" by Agrawal, is r = 0.998, which entails, according to our above results, a 
domain of  intersection having the width A(1/T~)= 1.1 x 10 -a K -1, but in the 
diagram given by Agrawal, the whole length of  the 1/T axis is only 0.1 r. 10-3 K -  1. 
Thus, one must not be surprised that from the 36 intersections of  the 9 Arrhenius 
lines only 13 ones appear (2 of  them are not visible in the Figure presented, since the 
lines d, e and h are not traced up to the log k axis). 

Consequently, Agrawal considers a CE to be true only if r = 1 for the log A vs. E 
plot, which never happens with values derived from experimental data. 

The second condition proposed lzy Agrawal, In k~ ~ 0, cannot be valid as a 
scientific criterion for a true CE. It is well known that the function In x is defined for 
x e (0, + ~ ) ,  i.e. the argument x must be dimensionless, and a positive real number. 
Therefore, instead of In ki, correctly one would have to write In (ks/ko), where k 0 
stands for the unit in which k i is expressed. In other words, Agrawal's condition 
means that ks must not be equal to the unit. Since the unit of the rate constant can be 
chosen arbitrarily, we are able to transform a "false" CE into a " t rue" one, by 
changing the unit, e.g. by expressing time not in minutes, but in seconds or hours. In 
contrast, even if k is determined under isothermal conditions and the In k vs. 1/T 
plots exhibit a concurrence at the point having the co-ordinates In k s and 1/Ti, by 
taking k~ for the unit of  rate constants, In k~ becomes zero and on the basis of  
Agrawal's criterion, the CE can be considered to be false. 
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